Why are cancer researchers studying cruciferous vegetables?

broccolli

David Erickson

http://www.cancer.gov/about-cancer/causes-prevention/risk/diet/cruciferous-vegetables-fact-sheet#q3

Cruciferous vegetables are rich in nutrients, including several carotenoids (beta-carotene, lutein, zeaxanthin); vitamins C, E, and K; folate; and minerals. They also are a good fiber source.

In addition, cruciferous vegetables contain a group of substances known as glucosinolates, which are sulfur-containing chemicals. These chemicals are responsible for the pungent aroma and bitter flavor of cruciferous vegetables.

During food preparation, chewing, and digestion, the glucosinolates in cruciferous vegetables are broken down to form biologically active compounds such as indoles, nitriles, thiocyanates, and isothiocyanates (1). Indole-3-carbinol (an indole) and sulforaphane (an isothiocyanate) have been most frequently examined for their anticancer effects.

Indoles and isothiocyanates have been found to inhibit the development of cancer in several organs in rats and mice, including the bladder, breast, colon, liver, lung, and stomach (2, 3). Studies in animals and experiments with cells grown in the laboratory have identified several potential ways in which these compounds may help prevent cancer:

  • They help protect cells from DNA damage.
  • They help inactivate carcinogens.
  • They have antiviral and antibacterial effects.
  • They have anti-inflammatory effects.
  • They induce cell death (apoptosis).
  • They inhibit tumor blood vessel formation (angiogenesis) and tumor cell migration (needed for metastasis).
  • Studies in humans, however, have shown mixed results.